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1. INTRODUCTION

In applications where it is necessary to study the transmission of plane sound waves in
subsonic, low Mach number #ow ducts at low frequencies, it is usually satisfactory to
assume the mean #ow to have a uniform velocity pro"le over the duct cross-section,
although the actual pro"le may vary from a parabolic shape, characterizing a laminar #ow,
to a #at shape, characterizing a fully developed turbulent #ow. This is based on previous
solutions in 3-D on isentropic sound propagation in ducts with a parallel mean shear #ow
(e.g., references [1}5]; the literature dealing with the problem is quite extensive), which show
that the fundamental mode propagation is only slightly dispersive and the uniform pro"le
approximation gives a fairly good representation of the propagation constants and the
cut-o! frequency. However, a plane wave analysis of the problem is not seen, and it is the
purpose of the present paper to provide this formulation. It transpires from this analysis
that, for plane sound waves in uniform ducts, an arbitrary mean #ow velocity pro"le is
formally equivalent to a uniform mean #ow and, therefore, the practical transmission
calculations developed for the case of uniform mean #ow can easily be re"ned for the e!ect
of the mean #ow velocity pro"le.

2. ANALYSIS

Consider a straight hard-walled duct that carries a steady axial mean #ow. The
propagation of plane sound waves in this #uid #ow is governed by the linearized continuity
and momentum equations: the continuity equation is
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and the momentum equation is
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Here, S denotes the cross-sectional area of the duct, x denotes the co-ordinate along the
duct axis and t denotes the time. The #uid density and pressure and the particle velocity in
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the axial direction are assumed to consist of acoustic #uctuations o, p and v superimposed
on the time-averaged mean values o

0
, p

0
and v

0
respectively. The acoustic #uctuations are

assumed to be functions of t and x only; v
0

is assumed to be independent of time, and p
0

is
assumed to be constant. Neglecting the visco-thermal e!ects allows the density and pressure
perturbations to be isentropically related, so that dp"c2

0
do, where c

0
denotes the speed of

sound. Thus, the "rst order equations governing the propagation of plane sound waves can
now be obtained as usual, by expanding equations (1) and (2), neglecting products of
acoustic perturbations as second order small quantities. Here, this process is applied by
assuming the mean #ow to be incompressible, which implies that the products SvN

0
and SbvN 2

0
are constant, where b and vN

0
are de"ned by equations (5) and (6). Hence, the acoustic

continuity and momentum equations are obtained as, respectively,
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Here,
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where vN
0

denotes the average mean #ow velocity over the duct cross-sectional area,
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For non-uniform ducts, or for a uniform duct carrying an axially non-uniform #ow (v
0

is
a function of x also), equations (3) and (4) do not admit an obvious analytical solution and
have to be solved numerically; however, for a uniform duct carrying an axially uniform
mean #ow, equations (3) and (4) simplify to, respectively,
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where z
0

("o
0
c
0
) denotes the characteristic impedance. Now, since a is a constant,

equations (7) and (8) can be solved analytically for the propagation constants, but it is not
necessary to undertake this step because, de"ning an e!ective characteristic impedance as
z
e
"o

0
c
0
/a, and an e!ective speed of sound as c

e
"c

0
a, reduces these equations to the

uniform mean #ow pro"le (a"1) form:
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where M
%
"vN

0
/c

e
(the density #uctuations are still determined by the relationship

dp"c2
0
do). The solution of equations (9) and (10) is well known: assuming exp(!iut) time

dependence, where (i denotes the unit imaginary number and u is the radian frequency, it
can be expressed as [6]

p (x)"p`(x)#p~(x), (11)

v(x)"
p` (x)!p~(x)

z
e

"a
p`(x)!p~(x)

o
0
c
0

, (12)

where the pressure wave components are given by

pG(x)"pG(0) exp(ikKGx). (13)



LETTERS TO THE EDITOR826
Here, k"u/c
0

denotes the wavenumber, and
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where k
e
"u/c

e
. Therefore, the propagation constants, KG, are given by
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This result shows that the correction due to the mean #ow velocity pro"le in the plane wave
propagation constants is of O [MM 2

0
] and, therefore, its e!ects would be discernible for

moderately high subsonic Mach numbers. Also, the closer b is to unity, the smaller is the
e!ect of pro"le on the propagation constants, even if the mean #ow Mach number is
moderately high.

For laminar #ow, for example, MM
0
"M

c
/2 and b"4/3, where M

c
denotes the centreline

Mach number. An exact analytical solution for this case has been presented in reference [5]
assuming (KM

0
)2@1, where K denotes a propagation constant, and solutions were given

for the propagations constants for M
c
"0)05, 0)1 and 0)2. Equation (15) predicts the results

of reference [5], to the accuracy attainable from the graphical data presented, with an error
less than 1%.

In reference [4], the fundamental mode propagation constants have been plotted as
functions of frequency for M

c
"0)2 and 0)6, but no direct comparison with these values

could be made here because the corresponding MM
0

and b could not be computed from the
data provided. However, an estimation can be made by assuming an equivalent &&1/n''th
power-law turbulent #ow that has the same pro"le-averaged Mach number. The latter is
given in reference [4] as M

e
"0)18168 for M

c
"0)2, which corresponds to about &&1/9)917''

power-law. Hence, the propagation constants are found from equation (15) as K`"0)8524
and K~"!1)209. From the table presented for the forward wave for M

c
"0)2, the

corresponding value of reference [4] is K`"0)8533, which con"rms the accuracy of the
present prediction. Similarly, M

c
"0)6 (M

e
"0)55) corresponds to &&1/11'' power law, given

the propagation constants as 0)6550 and !2)104. In this case, the corresponding results of
reference [4] are not tabulated and their extraction as slopes of the supplied dispersion
curves with de"nite accuracy is di$cult; however, the above values appear to be very close
to the predictions of reference [4].

A somewhat far-fetched application of this theory is a duct carrying a con"ned core #ow.
Assuming an axially uniform core #ow, plane sound wave propagation in such a duct can be
modelled by the present theory by taking b"S/S

j
and MM

0
"M/b, where S and S

j
denote

the cross-sectional area of the duct and the core, respectively, and M denotes the Mach
number of the core #ow. With this notation, the propagation constants for the forward and
backward waves in the duct can be expressed as

K$

"$[J1#(b!1)M2/b2$M/b]~1. (16)

An exact dispersion equation for sound propagation in a circular duct carrying
a con"ned axially uniform core #ow has been derived in reference [7]. In Figure 1, the
forward wave propagation constants as computed by using equation (16) and the dispersion
equation derived in reference [7], for b"2, are compared. Also shown in Figure 1 is the
propagation constant for the core #ow averaged over the duct cross-section as uniform
mean #ow; that is, K`"1/(1#M/b). Equation (16) overestimates the predictions of
reference [7] by less than about 5% error, but it provides about as much improvement over
the values based on the assumption of uniform mean #ow.



Figure 1. Propagation constant of the forward travelling wave in a duct carrying an axially uniform core #ow,
b"2.****, Present plane wave theory; }} } } , reference [7];*** , uniform pro"le with velocity averaged
over duct cross-sectional area.
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3. CONCLUSION

The theory of plane sound wave propagation in a uniform duct carrying a uniform mean
#ow has been extended to include the e!ect of the velocity pro"le. This theory may be used
to re"ne practical duct acoustics calculations when frequency and mean #ow velocity Mach
number are low enough for di!raction and radial dependence due to shear #ow is negligible.
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